Drones Are Doing More In U.S. Than You May Know, As These 3 Companies Show

Five years ago, the pundits predicted that by now we would be seeing tens of thousands of drones buzzing over our heads delivering everything from pizzas and burritos to the latest “must-have” item from Amazon. So what happened? Where are they? In a nutshell, they are here, but the general public doesn’t see them—at least not daily—and they aren’t necessarily delivering what was predicted. The fact is that commercial drones fly in remote areas or over private property every day by the thousands. They’re performing work on farms, powerlines, construction sites, cell towers, and oil pads, especially in the U.S. where there are more than 118,000 FAA-certified remote pilots. Compare that to the U.K., where there are just under 5,000. Delivering pizzas and burritos will likely be a very small part of what drones will be doing in the future. According to the largest benchmark study on commercial drones, the bulk of all current industrial use outside of film, photo and video falls into two categories: surveying and mapping land areas and inspecting and monitoring physical structures. And it’s these two uses that will continue to drive the growth of drones for industrial use for many years to come. Three companies represent this growth and are worth getting to know: PrecisionHawk, DroneDeploy and SkySkopes. In many way,s they are emblematic of the current state of the growing commercial drone industry and provide insight into its future. PrecisionHawk Founded in 2010 and headquartered in Raleigh, N.C., PrecisionHawk was one of the

Read more...

Drones Are Doing More In U.S. Than You May Know, As These 3 Companies Show

Five years ago, the pundits predicted that by now we would be seeing tens of thousands of drones buzzing over our heads delivering everything from pizzas and burritos to the latest “must-have” item from Amazon. So what happened? Where are they? In a nutshell, they are here, but the general public doesn’t see them—at least not daily—and they aren’t necessarily delivering what was predicted. The fact is that commercial drones fly in remote areas or over private property every day by the thousands. They’re performing work on farms, powerlines, construction sites, cell towers, and oil pads, especially in the U.S. where there are more than 118,000 FAA-certified remote pilots. Compare that to the U.K., where there are just under 5,000. Delivering pizzas and burritos will likely be a very small part of what drones will be doing in the future. According to the largest benchmark study on commercial drones, the bulk of all current industrial use outside of film, photo and video falls into two categories: surveying and mapping land areas and inspecting and monitoring physical structures. And it’s these two uses that will continue to drive the growth of drones for industrial use for many years to come. Three companies represent this growth and are worth getting to know: PrecisionHawk, DroneDeploy and SkySkopes. In many way,s they are emblematic of the current state of the growing commercial drone industry and provide insight into its future. PrecisionHawk Founded in 2010 and headquartered in Raleigh, N.C., PrecisionHawk was one of the

Read more...

What Every CIO Needs To Know About Commercial Drone Data

This post first appeared on Forbes.com as Drones Pose A Unique Big Data Challenge For Business Users The public might consider them nuisances, but in the commercial market, drones are valuable data collection devices. Their primary task is to capture, store, and transmit data. So as IT departments consider integrating more drone data into existing enterprise business processes, they face new data governance requirements. As drone technology matures, it is important to know what it means for you as the steward of your firm’s information technology and software. Drones present both a big data and an IoT challenge Up to now, the focus of commercial drone use has been on accurate data collection and visualization—not IT process integration. To be fair, applications have been developed to support verticals like agriculture, construction, energy, mining, and telecom with cloud-based services, but these applications mostly produce and serve up maps, e.g., location maps for managing and servicing company infrastructure and other assets. Just as with big data, the challenges of drone data include analysis, curation, search, sharing, storage, transfer, visualization, and information privacy. We are already beginning to see drones efficiently replace static IoT sensors with one device that is in motion and can capture multiple types of data (so not just pictures and video, but also emission gases, radio signals, geodetic data, etc.). Is drone data that unique? Like all IoT devices that are in motion, drones bring a lot of value and at the same time have a lot of challenges. For

Read more...

What Every CIO Needs To Know About Commercial Drone Data

This post first appeared on Forbes.com as Drones Pose A Unique Big Data Challenge For Business Users The public might consider them nuisances, but in the commercial market, drones are valuable data collection devices. Their primary task is to capture, store, and transmit data. So as IT departments consider integrating more drone data into existing enterprise business processes, they face new data governance requirements. As drone technology matures, it is important to know what it means for you as the steward of your firm’s information technology and software. Drones present both a big data and an IoT challenge Up to now, the focus of commercial drone use has been on accurate data collection and visualization—not IT process integration. To be fair, applications have been developed to support verticals like agriculture, construction, energy, mining, and telecom with cloud-based services, but these applications mostly produce and serve up maps, e.g., location maps for managing and servicing company infrastructure and other assets. Just as with big data, the challenges of drone data include analysis, curation, search, sharing, storage, transfer, visualization, and information privacy. We are already beginning to see drones efficiently replace static IoT sensors with one device that is in motion and can capture multiple types of data (so not just pictures and video, but also emission gases, radio signals, geodetic data, etc.). Is drone data that unique? Like all IoT devices that are in motion, drones bring a lot of value and at the same time have a lot of challenges. For

Read more...

Evaluating the Economics of BVLOS Drone Operations

We just announced the release of our latest research on commercial drone operations. The Economics of Using Drones for BVLOS Inspections is a white paper sponsored by PrecisionHawk, the leading provider of drone technology for the enterprise, which provides a foundation for businesses to evaluate when it’s best to use traditional ground and manned aviation, line of sight drones, or BVLOS (for “beyond visual line of sight”) drone inspection approaches. It’s designed as a comprehensive primer of drone inspections in specific industries. The paper answers questions like: What’s the best way to enable an effective drone strategy? What are the economic benefits of operating drones? What are the costs, benefits, and risks of using drones for BVLOS operations? How does that compare with traditional inspection methods? Here is an excerpt: As the commercial drone industry continues to evolve, widespread BVLOS drone inspection has the potential to significantly change business models for oil and gas, utilities, insurance, and other industries. Representatives we spoke with in those industries point to four main drivers motivating them to explore BVLOS operations: Safety, as in preventing fatal helicopter crashes or accidents from having to manually climb towers to take readings; Costs, or reducing dependence on a $1,500-per-rotor-hour helicopter and personnel and even cutting the time and expense of the multiple flights needed in flying drones within visual line of sight (VLOS); Data inconsistency and lack of quality, since manual data collection sometimes involves photos taken from a helicopter traveling at speed and at different heights

Read more...